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After the work of Suppes and Zanotti it is clear that the proof of the impossibility 
of local theories is a probability argument. The notion of locality is essentially 
a principle of conditional statistical independence which is strictly tied to that 
of exchangeability. De Finetti's celebrated representation theorem makes the 
connection clear. The way in which Bell's experiment is performed suggests that 
the probability function which is more suitable to describe it is not exchangeable, 
but partially exchangeable. It is known that partially exchangeable probability 
functions show a nonlocal behavior. Working with these functions, it is possible 
to make use of observations regarding one stochastic process in order to change 
the distribution of another process. We enlarge to uncertain evidence a classical 
probability function we have used in deriving some quantum correlations. By 
means of this enlargement we give simple examples of a nonlocal probability 
function. 

1. I N T R O D U C T I O N  

Af te r  the work  o f  Suppes  and Zanott i  it is quite c lear  that the p roof  of  
the imposs ib i l i ty  o f  local  theories  is a probabi l i ty  argument.  More  specif ical ly:  
whi le  "the notion o f  local i ty  o f  an objec t ive  hidden var iable  theory is essen- 
t ia l ly a pr inciple  of  condi t ional  stat ist ical  independence"  (Suppes  and Zanott i ,  
1980), the der ivat ion  o f  Bel t ' s  inequal i ty  rests "on the assumpt ion  that there 
is a h idden var iable  that renders  the spin results condi t ional  independent"  
(Suppes  and Zanotti ,  1984). On the other hand, the not ion o f  condi t ional  
independence  is strictly tied to that of  exchangeabi l i ty .  De Fine t t i ' s  ce lebra ted  
representa t ion theorem makes  the connect ion  clear. For  these reasons  it is quite 
natural  that the work  o f  Suppes  and Zanot t i  proceeds  f rom an exchangeable  
probabi l i ty  function. However ,  the way  in which Bel l ' s  exper iment  is per- 
fo rmed  suggests  that the probabi l i ty  function which is mos t  sui table to 
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describe these experimental results is not exchangeable, but partially 
exchangeable. Moreover, it is known that partially exchangeable probability 
functions show a nonlocal behavior (Daboni and Wedlin, 1982). This means 
that working with such functions, it is possible to make use of observations 
regarding one stochastic process in order to change the distribution of another 
process. In the present paper, first, we enlarge to uncertain evidence a probabil- 
ity function we have already used in deriving some quantum correlations 
and, second, using this enlargement, we give simple examples of  a nonlocal 
probability function. 

2. F O U R F O L D  TABLES 

It is normally taken for granted that the spin results of two parallel 
apparatuses I and H in a Bell experiment assume values of the same observ- 
able. More specifically, while the spin measurements of each apparatus can 
take the value + 1/2 or -1 /2 ,  one supposes that the spin measurement of 
apparatus I and that of  appara tus / / a re  values belonging to the same observ- 
able. On the contrary, we are persuaded that measurements performed at I 
and those performed at H refer to different observables or, to use statistical 
jargon, to different variables. These measurements give rise to bivariate data 
which demand a bivariate analysis. As a consequence, the spin results cannot 
be described by a univariate distribution, but they are described by a bivariate 
one. Plainly said, in Bell 's experiment we are faced with two variables 
(observables), i.e., measurement at apparatus I and measurement at apparatus 
II, each with two values (eigenvalues), i.e., + 1/2 and - 1/2. Hence, once we 
have supposed the exchangeability of each sequence of measurements, the 
description of the experiment is given by a 2 X 2 (fourfold) contingency 
table whose possible values are described as follows: 

I + - 
H 
+ + +  - - +  
_ -+ 

(I) 

The head row, which refers to apparatus/ ,  is + for + 1/2 and - for - 1 /2 ,  
and the same holds for the head column, which refers to apparatus H. Hence 
+ + in the entry 11 refers to spin + 1/2 for both measurements, - + in the entry 
12 refers to spin - 1/2 for measurement at I and spin + 1/2 for measurement at 
//, and so on. 

When the directions of  orientation are 0 for I and qb for II, the distribution 
of probabilities, given from quantum mechanics, is described as follows: 
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I + 
H 

+ ~ ~ c~ _ 
2 

- -  ~ C0S2 2 sin2 

1 1 

whose marginal column is 

2 2 2 c~ ' 

2 2 c~ + 2 sin2 

and whose marginal row is 

1 - t s i n 2 ( ~ - ~ - ) +  1 (0--~2~) 2 2 2 c~ 

2 2 c~ + 2 sin2 

Putting co = 0 - +, we have the following results: 
For co = 0 

= 1  

i.e., the contragraduation table. 
For o~ = ~r/2 

_x_ = ~ L1/2 1/2j 

i.e., the independence table. 
For o~ = -rr 

1[; o] 
i.e., the cograduation table. 

(II) 
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At the outset we must say that our work is not intended to derive 
table (II) in an original way. For this reason we limit ourselves to some 
considerations which could be useful in a future statistical derivation. First, 
table (II) is a special type of  2 • 2 table because its margin distributions are 
uniform. Second, it is a mixture o f  the e x t r e m e  T(0) and _T(,rr) with w e i g h t s  

w0(~o) = cos2(eo/2) and w~(to) = sin2(o~/2). Finally, a nontrivial derivation o f  
table (II) should be based on probability conditions justifying the weights o f  
the mixture. The way in which probability conditions can justify probability 
allotment will be made clear in the following sections. As a first step in the 
direction of  making these conditions explicit, we describe a statistical method, 
working on extreme tables o f  the type just  seen, which exhibits nonlocal 
features. 

3. T W O - D I M E N S I O N A L  S T O C H A S T I C  P R O C E S S E S  

As we have seen, in order to give a probability description o f  Bell 's  
experiment we must consider bivariate distributions. Hence, first of  all, we 
give a brief description of  a way in which it is possible to build up a predictive 
bivariate distribution. 

Consider a two-dimensional stochastic process Y :=  Y~, 112 . . . . .  yn, 
. . . .  Yn = (ln, II~) whose subprocesses are I : =  I i , /2  . . . . .  In . . . .  and I I  :=  
l i t ,  112 . . . . .  IIn . . . . .  The first subprocess refers to variable I whose values 
are 1 . . . . .  j . . . . .  k; the second one to v a r i a b l e / / w h o s e  values are 1 . . . . .  
i . . . .  h. The evidence of  these processes is given by yn  : =  (It = j l ,  111 = 
i t )  . . . . .  (In = • ,  11n = in), j, ,  = 1 . . . . .  k ,  in = 1, . . . ,  h ,  for Y; I n : =  I~ = 
Jl . . . . .  In = Jn for I; II" :=  I11 = il . . . . .  l ln  = in for II .  The k • h table 
corresponding to Y" is 

1 1 2 " .  k 
H 

1 ni l  / ' / 12  " " " nlk gtl. 

2 / ' /21 / ' /22 " " " / ' /2k / / 2 .  

h Flh I 12h2 " " " g lhk  n h .  

gl, l H . 2  " " �9 Fl .k  Fl 

(III) 

The vectors corresponding to I" and I I  n are, respectively, n.i : =  (n.l . . . . .  
n.k) and nn. :=  (nl . . . . . .  nh.). 

The method we are considering is a way  to construct predictive bivariate 
distributions or, what is the same thing, to allot predictive probabilities to 
each cell of  a k • h table. But before doing this, let us recall some results 
about predictive univariate distributions, that is, the case of  a unique variable. 
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4. ONE-DIMENSIONAL STOCHASTIC PROCESSES 

Given  a stochastic process X : =  Xi, )(2 . . . . .  X, . . . . .  referring to a unique 
var iable  whose  values are 1 . . . . .  d, we cons ider  the predictive probabi l i ty  

P[X~+, = j l X " }  (1) 

where X n : =  Xl = j l  . . . . .  Xn = j . ,  j .  = 1 . . . . .  d, is the evidence  whose  

d- tuple  is n : =  (nl . . . . .  ne), ~]=1 n: = n. W h e n  (1) is exchangeable and 
invariant and m > n we have 3 

P{X~+~ : j l  x"} = P{Xm : j l  x"} = :  P{ j l  n} - ~'p/+ n: (2) 
k + n  

j = 1 . . . . .  d, where  py : =  P{Xm = j } is the initial distr ibution,  

P{Xm = jtXn = g} 
k : -  "q and ~q : =  

1 - ~q pjpg 

We call  (2) the final distr ibution (given X n or n). 
Cons ider ing  weights w~ : =  kpj ,  w : =  (wl . . . . .  w~), EI=I wj = w, we 

have the fo l lowing  form of  (2), 

p { j l n }  _ w / +  nj 
w + n  

In vector ia l  form the final dis tr ibut ion is 

1 
p(w, n) - - -  (w + n) (3) 

w - l - n  

Consider ing  the vertices vi = (0 . . . . .  1 . . . . .  0), i = 1 . . . . .  d, o f  a (d - 
l ) -d imens iona l  s implex as the ext reme (determinis t ic)  dis tr ibut ions v/(/) = 
gij for e a c h j  = 1 . . . . .  d, then the predic t ive  dis t r ibut ion is a convex  combina-  
t ion o f  these distr ibut ions with weights  wj + nj, that is, (3) becomes  

d 

p(w, n) _ _ _ 1  ~ (wi + ni)vi 
w + n i = l  

The method  we  have jus t  sketched es tabl ishes  a 1-1  cor respondence  be tween  
the poss ib le  outcomes  and the vert ices o f  a s implex.  An  observat ion  amounts  
to an (empir ica l )  instantiat ion of  a ver tex o f  the s implex.  The intui t ive formula-  
t ion of  an exchangeable ,  invariant  p red ic t ive  inference referr ing to a one-  
d imens iona l  s tochast ic  process  is as fo l lows:  any step of  the process  instanti-  

3For a detailed discussion of this derivation see Costantini and Garibaldi (1989, 1991). 
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ates an extreme point; the weight of the instantiated vertex is increased by 
1; the final predictive distribution is determined by renormalization. 

5. U N C E R T A I N  E V I D E N C E  

We call an outcome that is biunivocally associated with an extreme 
point pure.  A pure outcome can be thought of as coming from a mass whose 
members share the same value of a variable. The frequency distribution of 
a mass of  this type concentrates all members on one value and none on the 
others. The law ruling this mass is a degenerate probability distribution which 
allots 1 to one value of its domain. We call laws of this type determinist ic .  
Deterministic laws can also be used as extreme laws giving a statistical 
description of a mass with respect to two variables. This can be done by 
melting the two variables into a new one whose values are the Cartesian 
product of the given two. In this case an inference can be performed in the 
way we have described in the previous section. 

But we can consider also outcomes which are not pure. An outcome of 
this type is not an instance of a single vertex, but involves more than one 
vertex. We call these outcomes mixed.  A number of reasons, both subjective 
and objective in character, may give rise to mixed observations. A rather 
trivial case occurs when on throwing a die we can observe only whether the 
occurring number is even or odd, while the probabilistic dynamics depends 
on the number which actually occurred. A more interesting one is given by 
statistical physics: observed values are mixed because they refer to observable 
macroprocesses, while the vertices refer to unobservable microprocesses. For 
this reason we shall also speak of observable outcomes of the macroprocess 
and unobservable instantiations of the vertices of  the microprocess. The case 
we are going to take into account arises by admitting conditions on vertices 
which forbid deterministic laws. This happens quite naturally when we con- 
sider a mass with respect to two variables. In this case, instead of considering 
extreme laws which concentrate the probability on a cell of  the k X h table, 
we suppose that extreme laws join each value of one variable to one and 
only one of the other. As a consequence extreme laws are no longer determinis- 
tic, but statistical. If  this is the case, no outcome can instantiate an extreme 
law; on the contrary, each law is consistent with more than one outcome. 

Bearing this in mind, let us consider the set of observable  ou tcomes  0 
= { 1 . . . . .  i . . . . .  s} and the set of  unobservable  vert ices U = { 1 . . . . .  j ,  
. . . .  t} and let P{ i Ij } be the (hypothetical) probability of the (observable) 
outcome i given the (unobservable) vertex j. It is worth noting that P { i l j  }, 
as a function of i, is the hypothetical probability of this outcome given the 
j th  vertex, while, as a function of j, it is the likelihood of this vertex given 
the ith outcome. In statistical physics and in the above-considered case of 
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the die, O is a partition of U, that is, P{i Ij }, as function of i, is deterministic. 
When between O and U there is a 1-1 correspondence, P{i l j}  is a delta 
function and we are in the case considered in the previous section. We now 
see what happens when none of these cases hold. 

For the predictive probability of an observable (but not yet observed) 
outcome we have 

P{i} = ~ P{i] j}P{j}  
j E U(i) 

where U(i) is the set of vertices compatible with i and P{ i Ij } is the likelihood 
of j. In general, given a microevidence whose k-tuple is n, we have 

P{iln} = ~ P{i l j }P{ j ln  } (4) 
.j e u( i) 

where P{ j ln}  is the microprobability of j. According to (4), in order to 
determine the probability of a macroprocess, we must know that of the 
microprocess. To do this, we suppose that the microprocess is exchangeable 
and invariant, i.e., that the final distribution of the microprocess is given by 
(2). Hence, given the macroevidence N = (Nl . . . . .  Ns), we have 

p{jlN} = ~ p{ j[n}P{nlN}  _ 1 ~ (wj + hi) P{NIn} P{n} 
.~N w + n n~N ~nsN P{NIn} P{n} 

where N is the set of all microvectors n consistent with the macroevidence N. 

6. T W O  EXAMPLES 

Now we give two examples of application of the method described in 
the previous section considering the most simple case, that in which the 
variables are both dichotomic, i.e., for the considered variables k = h = 2. 
Hence the four possible outcomes are the entries of table (I). 

In the first example we take as extreme laws the tables of cograduation 
and contragraduation, i.e., the matrices 

and allot them the weights of the pair w = (P{Ml} = wl, P{M2} = w2), 
w~ + w2 = w. Doing this, we assign to each entry the initial probabilities of 
the following bivariate distribution: 

,[w 1 w  re0:I: :] 
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For the sake of simplicity we consider a unique outcome that we suppose to be 

The final distribution is 

_ 1 [ w t + l  w 2 ]  
_ p ( w , - - )  2(w + 1) w2 wl + 1 (5) 

which shows the nonlocal features of  the considered probability function. 
A slightly more complex case arises when we take as extreme laws the 

following three matrices4: 

a n d  t h e  weights w = (P{MI} = wl, P{_..M_M2} : w2, P { M 3 }  : w3), Wl + w2 

+ w3 = w. In this case we take as initial distribution the matrix 

1 [w, W2 "~" W3] 
_p w, w2 w +w3 

whose margins are not uniform. Considering the same outcome as before, 
we have  Ew+w w3j 

- -  W 2 q -  W 3 -~- _ _  

_p_(w, - - )  - 2(w + 1) wl + w3 wl + w3 
w2 wl + w3 + l 

As can easily be imagined, taking into account a great number of extreme 
laws has the result of emphasizing the nonlocal feature of  the probability 
function. 

7. C O N C L U S I O N  

In conclusion we comment on the probability function described in the 
present paper. 

First, we point out the difference between the extreme laws of inferences 
based on pure and mixed evidence. In the first case the extreme laws are 
deterministic and each outcome is compatible with only one law. In the 
second case the extreme laws are statistical and each outcome is compatible 

4This case was first examined by Daboni and Wedlin (1982). They referred to de Finetti's 
theorem taking a Dirichlet distribution as prior. 
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with more than one law. Moreover, these laws are statistical but of a special 
order. Considering a law of this type, we can restore determinism about one 
variable by choosing a definite value of the other. For example, considering 
M2 of the previous section and limiting our attention to the value - of 
variable L we have a deterministic law for variable II, that is, all members 
of this submass have value +.  

Second we notice the difference between the two types of dependences 
of the two methods we have considered. In the method sketched in Section 
4 we take into account the first sort of dependence. More specifically, suppos- 
ing that the statistical behavior of the members of a mass is described by 
(2), the dependence ensues from the fact that a member of a mass bears a 
value of the same variable or not. Considering elementary particles, in the 
simpler case, we have 

P{Xm = j }  r P{Xm = j l / ,  = J }  

In fact, once we put Pi = k-l ,  the dependence characterizing these particles 
is captured by the parameter k: 

Putting k = k, i.e., considering bosons, we have 

1 1 + 1 _ P{Xm = jlx, ,  = j }  P{Xm = j }  = ~ r  k + ~  

Putting X = - k ,  i.e., considering fermions, we have 

1 1 - 1 _ P{Xm =j[Xn = j }  P{Xm = j }  = ~ r k +-~ 

Also, the method described in Section 5 shows, with respect to the 
microprocess of vertices, this type of dependence. But it shows another 
type of dependence, namely that existing between the two subprocesses. 
Considering the first example of the previous section, the final distribution 
(5) attests that, having observed a member of the submass marked by H -  
with the value - of the variable I has changed the probability of being I -  
for a member of the same submass, as is obvious, but also the probability 
of being I+  for a member of the other submass marked by H+,  and this is 
not so obvious. The frequency distribution resulting from Bell's experiment 
shows this type of dependence. We have presented a statistical method that 
accounts for the same type of dependence. 
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